Analysis 2
 16 April 2024

Warm-up: Next slide.

Find $f^{\prime}(x)$, also written $d f / d x$.
Differentiate the functions whose letters are the start of your first or last name.
A) $x^{2}-5 x+27$
J) $x \cos (x)$
P) $x^{4}-x^{3}+x^{2}-x+1$
B) $\frac{1}{2}-x$
K) $5-x^{3}$
Q) $5+\sqrt{5}$
C) $c x^{3}$
D) $8 \sin (x)$
L) $\left(x^{2}+1\right)\left(x^{10}-3\right)$
R) $3 \sin (x)+2 \cos (x)$
Ł) $\frac{2}{\sqrt{x}}$
S) $\frac{-2}{x^{5}}$
E) $7 \cos (x)$
F) $x^{2} \cos (x)$
G) $6 x^{-2}$
M) $\cos (x)+\sqrt{x}$
T) $\cos (x) \cdot \sqrt{x}$
N) $x^{-1 / 9}$
U) $\cos (x) \cdot \sin (x)$
V) $\sqrt{x^{5}}$
H) 1238
O) $\sqrt{\sqrt{x}}$
l) $\sqrt[3]{x}$
O) $7 x^{2}+5+3 x^{-1}$
Y) $6 x^{-2}+5 x^{2}$
Z) x^{100}

Find f^{\prime} or $d f / d x$. Do this now.

Differentiate the functions whose letters are the start of your first or last name.
A) $2 x-5$
J) $\cos (x)-x \sin (x)$
P) $4 x^{3}-3 x^{2}+2 x-1$
B) -1
K) $-3 x^{2}$
Q) 0
C) $3 c x^{2}$
D) $8 \cos (x)$
E) $-7 \sin (x)$
L) $\left.\left(x^{2}+1\right) 10 x^{9}+2 x\left(x^{10}-3\right) \mathrm{R}\right) 3 \cos (x)-2 \sin (x)$
F) $2 x \cos (x)-x^{2} \sin (x)$ M) $-\sin (x)+\frac{1}{2} x^{-1 / 2}$
G) $-12 x^{-3}$
N) $\frac{-1}{9} x^{-10 / 9}$
H) 0
O) $\frac{1}{4} x^{-3 / 4}$
S) $\frac{10}{x^{6}}$
Ł) $\frac{-1}{x^{3 / 2}}$
T) $\frac{\cos (x)}{2 \sqrt{x}}-\sin (x) \sqrt{x}$
U) $\cos (x)^{2}-\sin (x)^{2}$
V) $\frac{5}{2} x^{3 / 2}$
l) $\frac{1}{3} x^{-2 / 3}$
O) $14 x-3 x^{-2}$
Y) $-12 x^{-3}+10 x$
Z) $100 x^{99}$

Higher derivalives

The second derivative of a function is the derivative of its derivative.
We can write this as

- $f^{\prime \prime}$ because it is $\left(f^{\prime}\right)^{\prime}$, or
- $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ because it is $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{\mathrm{~d}}{\mathrm{~d} x}[f]\right]$.

Speaking:
 "f double-prime"

To calculate a second derivative, just differentiate twice!
Example: for $f(x)=9 x^{4}$ we have $f^{\prime \prime}(x)=108 x^{2}$ because

$$
9 x^{4} \leadsto 36 x^{3} \leadsto 108 x^{2} .
$$

Higher derivalives

The third derivative of a function is the derivative of its second derivative.
We can write this as

- $f^{\prime \prime \prime}$ because it is $\left(f^{\prime \prime}\right)^{\prime}$, or
- $\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}$ because it is $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}\right]$.

To calculate a second derivative, just differentiate three times!
Example: for $f(x)=9 x^{4}$ we have $f^{\prime \prime \prime}(x)=216 x$ because

$$
9 x^{4} \leadsto 36 x^{3} \leadsto 108 x^{2} \leadsto 216 x .
$$

Higher derivatives

We know $f^{\prime}(x)$ can tell us whether $f(x)$ is increasing or decreasing.

What can $f^{\prime \prime}(x)$ tell us?

- Next week

What can $f^{\prime \prime \prime \prime}(x)$ tell us?

- It's not used often.

If $f(B)$ is position then $f^{\prime}(k)$ is velocity or speed, $f^{\prime \prime}(k)$ is acceleration, $f^{\prime \prime \prime}(k)$ is jerk,
$f(4)(k)$ is snap or jounce, $f(s)(k)$ is crackle, $f(6)(k)$ is pop.

Higher derivalives

Task: Find the second derivative of $x^{2} \cos (x)$.

Noble: Writing

$$
x^{2} \cos (x)=-x^{2} \sin (x)+2 x \cos (x)
$$

is incorrect, and you will lose points for il.
Also, do not write $f(x)^{\prime}$. Il should be $f^{\prime}(x)$.

The tangent line to the curve $y=f(x)$ at $x=a$ is the line through the point $(a, f(a))$ whose slope is the number $f^{\prime}(a)$.

- Using "slope-intercept form", $y=m x+b$, we have $m=f^{\prime}(a)$ but will have to do a bit of extra calculation to find b.
- Using "slope-point" format, $y-y_{0}=m \cdot\left(x-x_{0}\right)$, is much easier. The tangent line will always* have the equation

$$
y=f(a)+f^{\prime}(a)(x-a) .
$$

Critical points

A number c in the domain of $f(x)$ is a critical point of $f(x)$ if either $f^{\prime}(c)=0$ (horizontal tangent line) or $f^{\prime}(c)$ doesn't exist (vertical tangent line, or jump, or corner).

Increasing and decreasing

On an interval or at a single point:

- If $f^{\prime}>0$ then f is increasing (스).
- If $f^{\prime}<0$ then f is decreasing (ㅍ).

Minimum and maximum

- How do these relate to derivatives?

Finding local extremes

This year we will not do tasks with absolute extremes from formulas.

But we will need to find local extremes for $f(x)$ from its formula.

What can we say about f^{\prime} at different points in these pictures?

Finding local extremes

To find the local min/max of $f(x)$,

1. Find the critical points of f.
2. Compute signs of f^{\prime} somewhere in between each CP, and at one point with $x<$ all CP , and at one point with $x>$ all CP .

3. The First Derivative Test

- If $f^{\prime}>0$ to the left of $x=c$ and $f^{\prime}<0$ to the right of $x=c$, then f has a local maximum at $x=c$.
- If $f^{\prime}<0$ to the left of $x=c$ and $f^{\prime}>0$ to the right of $x=c$, then f has a local minimum at $x=c$.
- If f^{\prime} has the same sign on both sides of $x=c$, then f has neither a local minimum nor local maximum at $x=c$.

Example 1: Given that the critical points of

$$
g(x)=x^{4}+\frac{4}{3} x^{3}-10 x^{2}+12 x
$$

are -3 and 1 , classify each as a local minimum, local maximum, or neither.

Summary of rules:

- $(c)^{\prime}=0$
- $\left(x^{c}\right)^{\prime}=c x^{c-1}$
- $\left(a^{x}\right)^{\prime}=$???
- $(\sin x)^{\prime}=\cos x$
- $(c f)^{\prime}=c\left(f^{\prime}\right)$
- $(\cos x)^{\prime}=-\sin x$
- $(\ln x)^{\prime}=$???
- $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- $(f g)^{\prime}=f g^{\prime}+f^{\prime} g$

We do not need to use f and g as the names of the functions, and we do not need to use x as the variable.

- If $u=10 x^{3}+1$ then $\frac{\mathrm{d} u}{\mathrm{~d} x}=30 x^{2}$.
- If $u=t \cos (t)$ then $\frac{\mathrm{d} u}{\mathrm{~d} t}=\cos (t)-t \sin (t)$.
- If $y=\sin (v)$ then $\frac{\mathrm{d} u}{\mathrm{~d} v}=\cos (v)$.
- If $f=u^{2}$ then $\frac{\mathrm{d} f}{\mathrm{~d} u}=2 u$.

We have seen how to do derivatives of $f(x)+g(x)$ and $f(x)-g(x)$ and $f(x) \cdot g(x)$. We will look at $\frac{f(x)}{g(x)}$ later.

There is one other important way to combine functions: the composition of $f(x)$ and $g(x)$ is the function $f(g(x))$, which can also be written as $f \circ g$.

Examples of compositions:

- $\sin \left(x^{2}\right)$
- $\sqrt{x^{2}+1}$
- $\ln \left(x^{3}+8\right)$
- $e^{\left(-x^{2}\right)}$
- $(5+\cos (x))^{3}$
- $\sqrt{\sin \left(x^{2}\right)}$

Before learning the general formula for $\frac{\mathrm{d}}{\mathrm{d} x}[f(g(x))]$, let's look at a composition that we can already differentiate with other methods:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(10 x^{3}+1\right)^{2}\right]=?
$$

We will answer this three different ways:

- By expanding $\left(10 x^{3}+1\right)^{2}=100 x^{6}+20 x^{3}+1$.
- By the PRODUCT RULE because $\left(10 x^{3}+1\right)^{2}=\left(10 x^{3}+1\right) \cdot\left(10 x^{3}+1\right)$.
- By the CHAIN RULE (new)!

Although $\frac{\mathrm{d} f}{\mathrm{~d} x}$ is not really a fraction, the idea of canceling out parts of fractions is a nice way to remember one of the official Chain Rule formulas.

Chain Rule

$$
\begin{aligned}
& \text { - } \frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} g} \cdot \frac{\mathrm{~d} g}{\mathrm{~d} x} \\
& \text { - } \frac{\mathrm{d}}{\mathrm{~d} x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

You do not need to know any of these formulas.

You only need to be able to use the Chain Rule to find derivatives of functions.

Differentiate $(\sin (x))^{4}$.

Chain Rule

$$
f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

For the example $(\sin (x))^{4}$, we call $\sin (x)$ the "inside function" and we call ($)^{4}$ the "outside function".

For any differentiable function g, we have $\frac{\mathrm{d}}{\mathrm{d} x}\left[(g(x))^{4}\right]=4(g(x))^{3} \cdot g^{\prime}(x)$.

Using the Product Rule or the Chain Rule, we can see that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[(g(x))^{2}\right]=2 g(x) g^{\prime}(x)
$$

Task 1: Find the derivative of $\left(4 x^{2}-8 x+9\right)^{50}$.

Task 2: Find the derivative of $\sin \left(4 x^{2}-8 x+9\right)$.

Task 3: Find the derivative of $(3 x-7) \cos (x)$.

Task 4: Find the derivative of $x^{3} e^{x}+\sin \left(x^{2}\right)$.

- Use the SUM RULE first.
- Then use the PRODUCT RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{3} e^{x}\right]$.
- And use the CHAIN RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[\sin \left(x^{2}\right)\right]$.

Task 5: Differentiate $\cos \left(7 x^{3}+e^{12 x} \sin (\pi x)\right)$.

- CHAIN RULE first.
- Then SUM. Then......

Task 6a: Find the derivative of $(3 x-7)(2 x+1)^{5}$.

- Use the PRODUCT RULE first.
- Then use the CHAIN RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[(2 x+1)^{5}\right]$.

Task 6b: Differentiate $(3 x-7)(2 x+1)^{-1}$.

- Use the PRODUCT RULE first.
- Then use the CHAIN RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[(2 x+1)^{-1}\right]$.

Name

Simplify the formula above as much as possible.

Task 6b: Differentiate $(3 x-7)(2 x+1)^{-1}$.

- Use the PRODUCT RULE first.
- Then use the CHAIN RULE for $\frac{\mathrm{d}}{\mathrm{dx}}\left[(2 x+1)^{-1}\right]$.

This is one way to differentiate $\frac{3 x-7}{2 x+1}$. There is also "the quotient rule".

The Quotient Rule $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{f}{g}\right]=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$ can be helpful, but you can always use Product and Chain instead, like we did for $\frac{3 x-7}{2 x+1}=(3 x-7)(2 x+1)^{-1}$.

Example: Find the derivative of $\tan (x)$.

- You should know that $\tan (x)=\frac{\sin (x)}{\cos (x)}$.

Derivalive formulas

$f(x)$	$f^{\prime}(x)$	You should memorize these!	
χ^{p}	$p x^{p-1}$		
$\sin (x)$	$\cos (x)$	\sqrt{x}	$\frac{1}{2 \sqrt{x}}$
$\cos (x)$	$-\sin (x)$	$\tan (x)$	$\sec (x)^{2}$
e^{x}	(alaer)	$\overbrace{\text { Maybe these too. }}$	
$\ln (x)$	(alaer)		

Derivalive formulas

$f(x)$	$f^{\prime}(x)$
x^{p}	$p x^{p-1}$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
e^{x}	(later)
$\ln (x)$	(later)

Constant Multiple: $(c f)^{\prime}=c f^{\prime}$
Sum Rule: $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
Product Rule:

$$
(f g)^{\prime}=f g^{\prime}+f^{\prime} g
$$

Quotient Rule:

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
$$

Chain Rule:

$$
(f(g))^{\prime}=f^{\prime}(g) \cdot g^{\prime}
$$

