

Analysis 2 16 April 2024

Warm-up: Next slide.

Find f'(x), also written df/dx. A) $x^2 - 5x + 27$ J) $x \cos(x)$ K) $5 - x^3$ B) $\frac{1}{2} - x$ L) $(x^2 + 1)(x^{10} - 3)$ C) cx^3 $\frac{2}{\sqrt{x}}$ D) $8 \sin(x)$ E) $7\cos(x)$ M) $\cos(x) + \sqrt{x}$ F) $x^2 \cos(x)$ N) $x^{-1/9}$ G) $6x^{-2}$ O) $\sqrt{\sqrt{x}}$ H) 1238 Ö) $7x^2 + 5 + 3x^{-1}$ $1) \quad \sqrt[3]{x}$

Differentiate the functions whose letters are the start of your first or last name.

P) $x^4 - x^3 + x^2 - x + 1$ Q) $5 + \sqrt{5}$ R) $3\sin(x) + 2\cos(x)$ S) $\frac{-2}{5}$ T) $\cos(x) \cdot \sqrt{x}$ U) $\cos(x) \cdot \sin(x)$ V) $\sqrt{x^5}$ Y) $6x^{-2} + 5x^2$ Z) x¹⁰⁰

Find f'or df/dx. Do this now. Differentiate the functions whose letters are the start of your first or last name. J) $\cos(x) - x\sin(x)$ P) $4x^3 - 3x^2 + 2x - 1$ A) 2x - 5**K**) $-3x^2$ Q) 0**B**) -1 L) $(x^2 + 1)10x^9 + 2x(x^{10} - 3)R) \quad 3\cos(x) - 2\sin(x)$ C) $3cx^2$ $= 12x^{11} + 10x^9 - 6x$ **S)** $\frac{10}{x^6}$ D) $8\cos(x)$ $\frac{-1}{r^{3/2}}$ T) $\frac{\cos(x)}{2\sqrt{x}} - \sin(x)\sqrt{x}$ E) $-7\sin(x)$ F) $2x\cos(x) - x^2\sin(x)$ M) $-\sin(x) + \frac{1}{2}x^{-1/2}$ U) $\cos(x)^2 - \sin(x)^2$ N) $\frac{-1}{9}x^{-10/9}$ G) $-12x^{-3}$ V) $\frac{5}{2}x^{3/2}$ H) 0 O) $\frac{1}{4}x^{-3/4}$ $Y) -12x^{-3} + 10x$ (1) $\frac{1}{3}x^{-2/3}$ \ddot{O}) $14x - 3x^{-2}$ Z) $100x^{99}$

The second derivative of a function is the derivative of its derivative. We can write this as • f'' because it is (f')', or of double-prime" • $\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$ because it is $\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{\mathrm{d}}{\mathrm{d}x} [f] \right]$.

To calculate a second derivative, just differentiate *twice*! Example: for $f(x) = 9x^4$ we have $f''(x) = 108x^2$ because $9x^4 \sim 36x^3 \sim 108x^2$.

HEGMET ACTIVALUVES

We can write this as • f''' because it is (f'')', or • $\frac{d^3 f}{dx^3}$ because it is $\frac{d}{dx} \left[\frac{d^2 f}{dx^2} \right]$.

To calculate a second derivative, just differentiate three times! Example: for $f(x) = 9x^4$ we have f''(x) = 216x because

The third derivative of a function is the derivative of its second derivative.

of triple-prime"

 $9x^4 \sim 36x^3 \sim 108x^2 \sim 216x.$

We know f'(x) can tell us whether f(x) is increasing or decreasing.

What can f''(x) tell us? 0 NEXE WEEK

What can f'''(x) tell us? @ Il's not used often.

Higher derivatives

If f(E) is position then f'(E) is velocity or speed, f''(E) is acceleration, f"(b) is jerk, f(4)(b) is snap or jounce, f(s)(b) is crackle, f(6)(b) is pop.

Task: Find the second derivative of $x^2 \cos(x)$.

Note: Writing $x^2 \cos(x) = -x^2 \sin(x) + 2x \cos(x)$ is incorrect, and you will lose points for it. Also, do not write f(x)'. It should be f'(x).

point (a, f(a)) whose slope is the number f'(a).

- to do a bit of extra calculation to find b.
- 0 tangent line will always* have the equation

kangent line

The tangent line to the curve y = f(x) at x = a is the line through the

• Using "slope-intercept form", y = mx + b, we have m = f'(a) but will have

Using "slope-point" format, $y - y_0 = m \cdot (x - x_0)$, is much easier. The

y = f(a) + f'(a)(x - a).

*unless the tangent line is vertical

Critical points

A number c in the domain of f(x) is a critical point of f(x) if either f'(c) = 0or corner).

Increasing and decreasing On an interval or at a single point: • If f' > 0 then f is increasing (\square). • If f' < 0 then f is decreasing (Σ).

Minimum and maximum How do these relate to derivatives?

(horizontal tangent line) or f'(c) doesn't exist (vertical tangent line, or jump,

This year we will not do tasks with *absolute* extremes from formulas.

But we will need to find *local* extremes for f(x) from its formula.

What can we say about f' at different points in these pictures?

- To find the local min/max of f(x),
 - 1. Find the critical points of f.
 - with x < all CP, and at one point with x > all CP.
 - 3. The First Derivative Test
 - If f' > 0 to the left of x = c and a local maximum at x = c.
 - a local minimum at x = c.
 - local minimum nor local maximum at x = c.

2. Compute signs of f' somewhere in between each CP, and at one point

$$f' < 0$$
 to the right of $x = c$, then f has

• If f' < 0 to the left of x = c and f' > 0 to the right of x = c, then f has

• If f' has the same sign on both sides of x = c, then f has *neither* a

Example 1: Given that the critical points of $g(x) = x^4 + \frac{4}{3}x^3 - 10x^2 + 12x$

are -3 and 1, classify each as a local minimum, local maximum, or neither.

Summary of rules: $\circ (c)' = 0$ $(x^c)' = c x^{c-1}$ $\circ \ (\cos x)' = -\sin x$ $\circ \ (\sin x)' = \cos x$ • (cf)' = c(f') \circ (f+g)' = f'+g'We do not need to use f and g as the names of the functions, and we do not need to use x as the variable. • If $u = 10x^3 + 1$ then $\frac{du}{dx} = 30x^2$. • If $u = t \cos(t)$ then $\frac{du}{dt} = \cos(t) - t \sin(t)$. • If $y = \sin(v)$ then $\frac{du}{dv} = \cos(v)$. • If $f = u^2$ then $\frac{\mathrm{d}f}{\mathrm{d}u} = 2u$.

 $(a^x)' = ???$ \circ $(\ln x)' = ???$ $\circ \ (fg)' = fg' + f'g$

We have seen how to do derivatives of f(x) + g(x) and f(x) - g(x)and $f(x) \cdot g(x)$. We will look at $\frac{f(x)}{g(x)}$ later.

f(x) and g(x) is the function f(g(x)), which can also be written as $f \circ g$.

Examples of compositions:

 $sin(x^2)$

$$\sqrt{x^2 + 1}$$

There is one other important way to combine functions: the composition of

 $\ln(x^3 + 8) \\ e^{(-x^2)}$

 $\circ (5 + \cos(x))^3$ $/\sin(x^2)$

that we can already differentiate with other methods:

$\frac{d}{dx} \left[(10x^3 + 1)^2 \right] = ?$

We will answer this three different ways: • By expanding $(10x^3 + 1)^2 = 100x^6 + 20x^3 + 1$. • By the PRODUCT RULE because $(10x^3 + 1)^2 = (10x^3 + 1) \cdot (10x^3 + 1)$.

- By the CHAIN RULE (new)! 0

Before learning the general formula for $\frac{d}{dx}[f(g(x))]$, let's look at a composition

Although $\frac{df}{dx}$ is not really a fraction, the idea of canceling out parts of fractions is a nice way to remember one of the official Chain Rule formulas.

You do *not* need to know *any* of these formulas.

You only need to be able to use the Chain Rule to find derivatives of functions.

Differentiate $(sin(x))^4$.

Chain Rule

For the example $(sin(x))^4$, we call sin(x) the "inside function" and we call $()^4$ the "outside function".

For any differentiable function g, we

Using the Product Rule or the Chain Rule, we can see that $\frac{\mathrm{d}}{\mathrm{d}x} \left[\left(g(x) \right)^2 \right] = 2 g(x) g'(x).$

have
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[(g(x))^4 \right] = 4(g(x))^3 \cdot g'(x).$$

Task 1: Find the derivative of $(4x^2 - 8x + 9)^{50}$.

Task 2: Find the derivative of $sin(4x^2 - 8x + 9)$.

Task 3: Find the derivative of $(3x - 7)\cos(x)$.

Task 4: Find the derivative of $x^3 e^x + \sin(x^2)$. Use the SUM RULE first. • Then use the PRODUCT RULE for $\frac{d}{dx} [x^3 e^x]$. • And use the CHAIN RULE for $\frac{d}{dx} \left[\sin(x^2) \right]$.

Task 5: Differentiate $\cos(7x^3 + e^{12x}\sin(\pi x))$. CHAIN RULE first. Then SUM. Then.....

Task 6a: Find the derivative of $(3x - 7)(2x + 1)^5$. Jse the PRODUCT RULE first. • Then use the CHAIN RULE for $\frac{d}{dx} [(2x+1)^5]$.

Task 6b: Differentiate $(3x - 7)(2x + 1)^{-1}$. Use the PRODUCT RULE first. 0 • Then use the CHAIN RULE for $\frac{d}{dx} [(2x+1)^{-1}]$.

Name

simplify the formula above as much as possible.

Task 6b: Differentiate $(3x - 7)(2x + 1)^{-1}$. Use the PRODUCT RULE first. • Then use the CHAIN RULE for $\frac{d}{dx} [(2x+1)^{-1}]$.

3x - 7This is one way to differentiate $\frac{2x+7}{2x+1}$. There is also "the quotient rule".

The Quotient Rule $\frac{d}{dx} \left| \frac{f}{g} \right| = \frac{gf' - fg'}{g^2}$ can be helpful, but you can always use Product and Chain instead, like we did for $\frac{3x-7}{2x+1} = (3x-7)(2x+1)^{-1}$.

Example: Find the derivative of tan(x). • You should know that $tan(x) = \frac{sin(x)}{cos(x)}$.

Derivalive formulas

f(x)f'(x)p x p-1 χp sin(x) $\cos(x)$ $-\sin(x)$ $\cos(x)$ (later) e^{x} $\ln(x)$ (later)

You should memorize these!

tan(x)

 $\frac{1}{2\sqrt{x}}$

 $\operatorname{sec}(x)^2$

Maybe these too.

f(x)f''(x)*p x p*-1 χp sin(x) $\cos(x)$ $-\sin(x)$ $\cos(x)$ (later) e^{x} ln(x)(later)

Derivalive formulas Constant Multiple: (cf)' = cf'Sum Rule: (f + g)' = f' + g'**Product Rule:** (fg)' = fg' + f'g**Quotient Rule:** $\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$ Chain Rule:

 $(f(g))' = f'(g) \cdot g'$